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Short Papers

Procedure for Direct Calculation of Characteristic

Admittance Matrix of Coupled Transmission Lines

Karl Reiss and Olgierd A. Palusinski

Abstract— Physical design of contemporary electronic circuits and

sytems involves their analysis with interconnections modeled as trans-
mission lines. Algorithms proposed in the literature for calculation of

characteristic admittance matrix are based on eigenanalysis and have in-
herent ambiguities associated with this method when multiple eigenvalues

occur. In this paper, the underlying theory and details of a new algorithm
developed for unconditionally unique resntts are given.

I. INTRODUCTION

In selecting line models for advanced microelectronic device

simulation there is a trade-off between accuracy and efficiency

[1]. The signal transmission is successfully modeled by lossless

transmission lines which provide upper bounds for crosstalk. Delay

analysis based on this line type underestimates the delay values in

comparison to lossy lines but still provides worst case results for

coupling noise and other performance parameters [2].

The characteristic admittance matrix [l’o] of a line system is a

most important quantity for a designer. Characteristic impedance

determines the levels of switching currents in the I/O drivers and

thus influences the switching noise which is one of the most decisive

parasitic effects in high performance electronic systems. Total trans-

mission delay is also determined by the characteristic impedance. Ho

[4] has given a detailed description of the concepts, mathematical

relationships and algorithms for computations involving coupled

transmission lines.

In this paper a new algorithm for computing the characteristic

admittance matrix or its inverse, the characteristic impedance matrix

is described. The matrix is computed directly without involving

eigenanalysis thus avoiding any ambiguities that could arise in case

of multiple eigenvalues. Per unit length time delays follow from

the roots of the characteristic polynomial. This can be considered

part of the eigenanalysis; but it is unique. It shoud be pointed out

that eigenanalysis is not unique if multiple eigenvalues occur. The

nonuniqueness and associated problems are discussed in the following

section.

II. PROBLEM STATEMENT

The matrices of capacitances and inductances per unit length of

line, [C] and [JZ], form the unique bridge between the physical and the

electrical characteristics of the lossless line system. These matrices

link the voltages and currents of the signals traveling along the

line system. The respective vectors, expressed by [~] and [1], with
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[1’] = [V,, V,,..., l;], etc., are related by the equations

g[v]=+]g[q
:[1]=-[c]jjv]

(1)

The line system extends in x-direction. A reference electrode is

assumed to be present but is not explicitly counted.

In order to minimize or eliminate reflections, the termination net-

work of a line system ought to approximate or match the characteristic

admittance matrix given by [4]

[lb] = [L]-’ [LC]+. (2)

The key computation is that of the square root of the matrix [L C].

In classical analysis the product of inductance and capacitance

matrices, [LC] = [L] [C] is diagonalized with the matrix [P] such

that

[P]-’ [LC][P] = [T:] (3)

where the right hand side is a diagonal matrix of eigenvalues ~,z. The

columns of the matrix [P] are formed by the eigenvectors.

Any signal traveling on a system of transmission lines appears as a

linear superposition of (eigen)modes which travel at their respective

velocities, 1/r,.

The square root of the matrix [LC] is then defined using the results

obtained from the eigenvalue problem

[Lc] + = [P][TJ[P]-’. (4)

The direct computation of square root of matrix [LC] proposed

in this paper is straightforward and does not involve eigenanalysis.

Eigenanalysis becomes complicated when [IX] matrix is asymmetric,

which is a general case ([LC] is symmetric in special cases only). In

addition the eigenanalysis may involve some ambiguities discussed

below.

The eigenvector matrix [P] is unique only in the case of distinct

eigenvalues. But an eigenvalue of multiplicity rn (m > 1) defines

an m-dimensional subspace with any vector of this subspace as an

eigenvector. Even if eigenvectors are submitted to orthonorrnaliza-

tion, degrees of freedom are not completely eliminated because it

is possible to generate different eigenvector matrices for the same

interconnect system. If for some reason different eigenvector matrices

(vis. [P] # [Q]) and their inversions are stored in a database an error

resulting from using [P] and [Q] – 1 in the formula (4) will occur.

This error will not be detected by the system and a user will not be

warned. Therefore, cae must be taken when using eigenanalysis in

the case of multiple eigenvalues.

In the past no attention was focused on this fact, because mainly

two line systems were treated for determining the estimates of

crosstalk. If multiple (double) eigenvalues occur in this case, the

whole vectorspace becomes an eigenspace and eigenanalysis is unnec-

essary. For line systems of more than n = 2 conductors, multiplicity

of eigenvalues was not considered in the literature.

In this short paper a more efficient algorithm for direct computation

of the square root of the [LC] -matrix is proposed. This algorithm

is more general than the one given in the cited literature because

it avoids eigenanalysis and ambiguities associated with it and is

applicable to other matrices as well.
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III. MATHEMATICAL FORMULATION

Within the scope of this article we consider only homogeneous line

systems. We anticipate all materials used as conductors or dielectrics

to be linear and instantaneous (local in time). This does not exclude

inhomogeneous and anisotropic materials (both terms are considered

within the cross section perpendicular to the conductors) but results

in constant matrices [~] and [C]. The passivity and reciprocity of

the materials makes both matrices positive definite and symmetrical

[C]T = [C], [L]T = [L]. The dimensions of all matrices are n x n and
those of the vectors are also n unless specified otherwise. The upper
index T denotes transposition and for simplicity we use [A] for the

matrix product [L] [C]. Despite the symmetry of its factor matrices,

the matrix [A] lacks symmetry because [L] and [C] in general do

not commute. But due to it’s composition and the properties of the

factor matrices specified above, a theorem of matrix theory applies

[5] stating diagonalizability and proofing positive definiteness of [A].

Both properties are used in building the new algotithm.

The square root of the matrix [A] which is known to exist from

(4) but is still considered unknown, is denoted [1?] such that

[R] . [1?]= [A]. (5)

The same (4) incorporates the positive definiteness of [R] as well

because all T, are positive. It should be noted here that there is no

easy way to express the square root of a matrix product by the square

root of its factor matrices [LC] 1/2 # [L] 1/2 [C] 1/2.

The characteristic admittance matrix [YO] and the characteristic

impedance matrix are both symmetrical and inverse to each other

[Yo]~ = [Y,], [YO]-l = [2,], [ZO]T = [20]. (6)

IV. SOLUTION METHOD

The proposed solution method exploits the root defining (5) di-

rectly. The root matrix [R] is considered to contain n2 unknown

matrix elements r A. Equation (5) is rewritten explicitly

The equations for the unknowns r,k are nonlinear, specifically they

are of quadratic nature, and their solution can be obtained by

multidimensional Newton iteration. For this purpose the system of

equations is written in the form

.fzk=~rzl ”rlk-azk=o (8)

1=1

because Newton’s method searches zeros of a set of functions .f,h.
The set of functions is also considered to be a matrix [F’].

The associated Jacobian tensor [J] is

(9)

where the symbol 6,3 represents the Kronecker symbol.
The unknowns and equations are specified by two indices, and thus

the problem appears as a matrix equation containing a tensor of rank

4 as the Jacobian. The tensor representation would be unusual for

computer implementation because there are no standard numerical

packages for such a formulation. Therefore the index pair i, k is

mapped into one index Q only by a = (k – 1) . n + i within the

range 1< a < n2. The same mapping applies to the pair 1,m. Greek

indices running from 1 to n2 replace index pairs from previously

introduced indices i, k, 1, m running only from 1 to n.

Within this new indexing the matrices [R] and [~] are considered

as vectors of dimension n2 and the Jacobian tensor [~] becomes a

SQUARE ROOT OF A REAL POSITIVE DEFINITE MATRIX
INPUT ORIGINAL 2 X 2 MATRIX BY ROWS

All A12 52.6050 4.5624

A21 A22 5.9579 49.9503

ITER. Rll R12 R21 R22

COUNT

1 7.25293 .31859 .41604 7.06755

2 7.24377 .31901 .41658 7.05815

3 7.24376 .31901 .41658 7.05814

4 7.24376 .31901 .41658 7.05814

5 7.24376 .31901 .41658 7.05814

6 7.24376 .31901 .41658 7.05814

Fig. 1. Root calculation example, [A] given, [R] root.

square matrix of dimensions n2 x n2. The resulting Newton formula is

[R](V+’) ,= [@’) - [J-1](u) . [@4 (lo)

where the upper index (v) is the iteration counter.

An estimate for the root matrix is possible due to the positive

definiteness of the matrix [A] which guarantees that this matrix is

diagonally dominant. This property transfers to the root matrix [1?].

A good approximation within the attraction region of the root matrix

solution in Newton’s algorithm is the diagonal matrix composed of

the roots from the diagonal elements only of matrix [A]

,::) = G. ($Zk. (11)

This procedure is used to compute the square root of the matrix [L C].

V. EXAMPLE

Transmission line data from typical off chip interconnections in

simple linear circuit environment is considered. The given matrices

[L] and [C] are for a coupled two conductor plus ground line system

[1]. Although the algoritm was programmed and tested for unlimited

number of lines n, the two line example given here demonstrates

the convergence properties by a compact printout and is itself of

considerable practical importance. The capacitance and inductance

matrices are

)‘c] = (:2;;4; ;:;;;:; ‘F1m’

436.57 127.94
(12)

‘L] = (127.94 495.66 )
nH/m.

A factor 10– 18 is extracted from the matrix product [LC] for better

representation of the printout results. Fig. 1 shows the progress of

iteration and contains the numerical values.

The resulting root matrix is multiplied with 10–9 (the root of the

extracted factor). The characteristic admittance matrix [Yo ] computed

using (2) is as follows

VI. NUMERICAL CONSIDERATIONS

The Newton algorithm given in Section III on mathematical

problem formulation does not require any inversion of the Jacobian

[,I][U). It is only necessaty to calculate the correction term, a vector

[s](”) from [~](”) [S](”) = [~](”) which leads to (10) rewritten as

[R](V+’) = [@) - [s](~).

There is a slowdown of the calculations rather than a speedup

and gain of accuracy with more sophisticated solvers for systems

of simultaneous linear equations. In each iteration the equation

must be solved only once before being updated for the next step.
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Therefore L – U factorization would be a wasted effort. Pivoting

is not necessary, because the Jacobian [J] is and remains diagonally

dominant. Iteration starts with all off diagonal elements set to O. Later

[J] coritains initsmain diagonal always asumof main diagonal

elements r,, but off diagonal only zeros or single elements T,k as

given in (9). Therefore simple Gauss-Jordan algorithmic superior in

this application.

Due to the quadratic type of nonlinearities in defining (8) the

convergence is very fast and reliable. Impractical applications within

line theory the root matrix is not only proven diagonally dominant

but the off diagonal elements are indeed small compared with the

diagonal ones. Within only two iteration steps the example from

Fig. 1 shows results within 10-4 accuracy range.

VH. SQUARE ROOT OF SYMMETRICAL MATRICES

The algorithm proposed in this paper applies to an arbitrary

positive definite matrix. This algorithm can be simplified if in

addition the matrix is symmetric, because the root matrix will also

besymmetric andtherefore contains fewer unknown elements. This

simplification will be applicable in general transmission line theory

where some calculations involve square roots of [L] or [C], for

example [L]~[C][L]~ or [C]*[L][C]* respectively [3]. In some

special cases the product [LC] is symmetric and the simplification

can also be applied.

With a slight modification of the definition of the functions f,k

to be zeroed by Newton’s algorithm and a new index mapping for

equations and variables it is possible to make the resulting Jacobian

matrix [J] also symmetrical and use specialized equation solvers to

calculate the correction term [S].

[1]

[2]

[31

[4]

[5]
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Elimination of Spurious Solutions in the

Calculation of Eigenmodes by Moment Method

B. Souny, H. Aubert, and H. Baudrand

Abstract— In this paper the origin of nonphysical solutions obtained
with Galerkln’s method is described. To remove these spurious solutions

a practical criterion is derived. It is shown on a patch resonator ex-

ample with expansion functions satisfying edge conditions, that spurious

solutions generated by the conventional approach are eliminated by the

application of the proposed method.

I. INTRODUCTION

The problem of finding the eigenmodes of a transmission line

or of a cavity is a classical one. Several papers, dealing with

integral methods, describe how to determine these eigenmodes by

Galerkin’s method [1 ]–[4], but the choice of expansion functions

which incorporate the edge conditions seems to generate nonphysical

solutions, named spurious solutions [5].

The problem of spurious solutions has been mostly developed in

the context of the finite-element method: the inaccurate approximation

of the zero eigenvalue and the corresponding eigenfunctions generate

spurious solutions [6]. A similar result has been obtained by the

authors of the present paper in the context of transverse resonance

method [7]: the inaccurate approximation of the infinite eigenvalue

and the corresponding eigenfunctions generate spurious solutions.

For an integral equation the origin of spurious solution is given

in [8], and a criterion for their elimination is demonstrated, but this

criterion gives no practical information about the choice of expansion

and weighting functions.

In this paper a practical criterion for a proper choice of the

expansion functions and the weighting functions is given.

II. THEORY

A. Notation

The extended [9] or symbolic [10] operator concept applied to

moment methods allows one to use generalized expansion functions

(they are in fact linear functional), hence we further suppose here

that we use an extended operator.

Extended or symbolic operator used in functional analysis is

associated to the so-called transposed operator concept rather than

adjoint one, as well as the use of duality product rather than scalar

product [1 1]. Duality product is more general than scalar product:

for example it is well known that it is not mathematically possible to

define a scalar product involving the “Dirac function.”

The notations for spaces, transposed operator and duality product

are now introduced:

Let U and V represent, respectively, the domain and the range of

an operator L. The elements of U and V are functions.

Let U represent the topological dual space of U and ~ represent the

topological dual space of V. The elements of ~r and T_’are continuous

linear functional.
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