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Short Papers

Procedure for Direct Calculation of Characteristic
Admittance Matrix of Coupled Transmission Lines

Karl Reiss and Olgierd A. Palusinski

Abstract— Physical design of contemporary electronic circuits and
sytems involves their analysis with interconnections modeled as trans-
mission lines. Algorithms proposed in the literature for calculation of
characteristic admittance matrix are based on eigenanalysis and have in-
herent ambiguities associated with this method when multiple eigenvalues
occur. In this paper, the underlying theory and details of a new algorithm
developed for unconditionally unique results are given.

1. INTRODUCTION

In selecting line models for advanced microelectronic device
simulation there is a trade-off between accuracy and efficiency
[1]. The signal transmission is successfully modeled by lossless
transmission lines which provide upper bounds for crosstalk. Delay
analysis based on this line type underestimates the delay values in
comparison to lossy lines but still provides worst case results for
coupling noise and other performance parameters [2].

The characteristic admittance matrix [Y5] of a line system is a
most important quantity for a designer. Characteristic impedance
determines the levels of switching currents in the I/O drivers and
thus influences the switching noise which is one of the most decisive
parasitic effects in high performance electronic systems. Total trans-
mission delay is also determined by the characteristic impedance. Ho
[4] has given a detailed description of the concepts, mathematical
relationships and algorithms for computations involving coupled
transmission lines.

In this paper a new algorithm for computing the characteristic
admittance matrix or its inverse, the characteristic impedance matrix
is described. The matrix is computed directly without involving
eigenanalysis thus avoiding any ambiguities that could arise in case
of multiple eigenvalues. Per unit length time delays follow from
the roots of the characteristic polynomial. This can be considered
part of the eigenanalysis; but it is unique. It shoud be pointed out
that eigenanalysis is not unique if multiple eigenvalues occur. The
nonuniqueness and associated problems are discussed in the following
section.

II. PROBLEM STATEMENT

The matrices of capacitances and inductances per unit length of
line. [C] and [L], form the unique bridge between the physical and the
electrical characteristics of the lossless line system. These matrices
link the voltages and currents of the signals travelling along the
line system. The respective vectors, expressed by [V'] and [I]. with
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[V1=1,Va,..., V%], etc., are related by the equations
[P 8
V] = -0 2] "
o I1=-[C 0 \4
11 = ~[C 2 V1.

The line system extends in x-direction. A reference electrode is
assumed to be present but is not explicitely counted.

In order to minimize or eliminate reflections, the termination net-
work of a line system ought to approximate or match the characteristic
admittance matrix given by [4]

[¥o] = [Z]H[LCT3. @

The key computation is that of the square root of the matrix [LC].

In classical analysis the product of inductance and capacitance
matrices, [LC] = [L][C] is diagonalized with the matrix [P] such
that

[PITLCI[P] = [+]] 3)

where the right hand side is a diagonal matrix of eigenvalues 72. The
columns of the matrix [P] are formed by the eigenvectors.

Any signal traveling on a system of transmission lines appears as a
linear superposition of (eigen)modes which travel at their respective
velocities, 1/7..

The square root of the matrix [LC] is then defined using the results
obtained from the eigenvalue problem

[LC)? = [P][=][P] . @)

The direct computation of square root of matrix [LC] proposed
in this paper is straightforward and does not involve eigenanalysis.
Eigenanalysis becomes complicated when [LC| matrix is asymmetric,
which is a general case ([LC] is symmetric in special cases only). In
addition the eigenanalysis may involve some ambiguities discussed
below.

The eigenvector matrix [P)] is unique only in the case of distinct
eigenvalues. But an eigenvalue of multiplicity m(m > 1) defines
an m-dimensional subspace with any vector of this subspace as an
eigenvector. Even if eigenvectors are submitted to orthonormaliza-
tion, degrees of freedom are not completely eliminated because it
is possible to generate different eigenvector matrices for the same
interconnect system. If for some reason different eigenvector matrices
(vis. [P] # [Q]) and their inversions are stored in a database an error
resulting from using [P] and [Q]™* in the formula (4) will occur.
This error will not be detected by the system and a user will not be
warned. Therefore, care must be taken when using eigenanalysis in
the case of multiple eigenvalues.

In the past no attention was focused on this fact, because mainly
two line systems were treated for determining the estimates of
crosstalk. If multiple (double) eigenvalues occur in this case, the
whole vectorspace becomes an eigenspace and eigenanalysis is unnec-
essary. For line systems of more than n = 2 conductors, multiplicity
of eigenvalues was not considered in the literature.

In this short paper a more efficient algorithm for direct computation
of the square root of the [LC]-matrix is proposed. This algorithm
is more general than the one given in the cited literature because
it avoids eigenanalysis and ambiguities associated with it and is
applicable to other matrices as well.
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III. MATHEMATICAL FORMULATION

Within the scope of this article we consider only homogeneous line
systems. We anticipate all materials used as conductors or dielectrics
to be linear and instantaneous (local in time). This does not exclude
inhomogeneous and anisotropic materials (both terms are considered
within the cross section perpendicular to the conductors) but results
in constant matrices [L] and [C]. The passivity and reciprocity of
the materials makes both matrices positive definite and symmetrical
[C]T =[C],[L]" = [L]. The dimensions of all matrices are nxn and
those of the vectors are also n unless specified otherwise. The upper
index T denotes transposition and for simplicity we use [A] for the
matrix product [L][C]. Despite the symmetry of its factor matrices,
the matrix [A] lacks symmetry because [L] and [C] in general do
not commute. But due to it’s composition and the properties of the
factor matrices specified above, a theorem of matrix theory applies
[5] stating diagonalizability and proofing positive definiteness of [A].
Both properties are used in building the new algotithm.

The square root of the matrix [A] which is known to exist from
(4) but is still considered unknown, is denoted [R] such that

[R]- [R] = [4]. 5)

The same (4) incorporates the positive definiteness of [R] as well
because all 7, are positive. It should be noted here that there is no
easy way to express the square root of a matrix product by the square
root of its factor matrices [LC]'/? # [L]Y/?[C]'/2,

The characteristic admittance matrix [Yo] and the characteristic
impedance matrix are both symmetrical and inverse to each other

Volf =[Yl, [Yo]™' =[Zl], [Z0]" = [Z0). )

IV. SOLUTION METHOD
The proposed solution method exploits the root defining (5) di-

rectly. The root matrix [R] is considered to contain n’® unknown
matrix elements r,5. Equation (5) is rewritten explicitly
Er,l-mk:a,k; 1<i<n, 1<k<n. 0

1=1

The equations for the unknowns r,z are nonlinear, specifically they
are of quadratic nature, and their solution can be obtained by
multidimensional Newton iteration. For this purpose the system of
equations is written in the form

fzk:ZTzl‘le_azk =0 3
=1

because Newton’s method searches zeros of a set of functions f.x.
The set of functions is also considered to be a matrix [I7].
The associated Jacobian tensor [J] is
lerkn = Ok =70 Skm + Tk * O ©)
8r1m
where the symbol é,; represents the Kronecker symbol.

The unknowns and equations are specified by two indices, and thus
the problem appears as a matrix equation containing a tensor of rank
4 as the Jacobian. The tensor representation would be unusual for
computer implementation because there are no standard numerical
packages for such a formulation. Therefore the index pair ¢,k is
mapped into one index a only by o = (k — 1) - n + i within the
range 1 < a < n®. The same mapping applies to the pair , m. Greek
indices running from 1 to n? replace index pairs from previously
introduced indices ¢, k, !, m running only from 1 to n.

Within this new indexing the matrices [R)] and [F'] are considered
as vectors of dimension n® and the Jacobian tensor [J] becomes a

SQUARE ROOT OF A REAL POSITIVE DEFINITE MATRIX
INPUT ORIGINAL 2 X 2 MATRIX BY ROWS

All Al2 52.6050 4.5624

A2] A22 5.9579 49.9503

ITER. R11 R12 R21 R22
COUNT

1 7.25293 .31859 41604 7.06755
2 7.24377 .31901 41658 7.05815
3 7.24376 31901 41658 7.05814
4 7.24376 31901 41658 7.05814
5 7.24376 31901 41658 7.05814
6 7.24376 31901 41658 7.05814
Fig. 1. Root calculation example, [A] given, [R] root.

square matrix of dimensions n? x n?. The resulting Newton formula is
(YD = (R - (17 (] (10)

where the upper index (v) is the iteration counter.

An estimate for the root matrix is possible due to the positive
definiteness of the matrix [A] which guarantees that this matrix is
diagonally dominant. This property transfers to the root matrix [R].
A good approximation within the attraction region of the root matrix
solution in Newton’s algorithm is the diagonal matrix composed of
the roots from the diagonal elements only of matrix [A]

rfg) = /A, * 6.k-

This procedure is used to compute the square root of the matrix [LC].

(11)

V. EXAMPLE

Transmission line data from typical off chip interconnections in
simple linear circuit environment is considered. The given matrices
[L] and [C] are for a coupled two conductor plus ground line system
[1]. Although the algoritm was programmed and tested for unlimited
number of lines n, the two line example given here demonstrates
the convergence properties by a compact printout and is itself of
considerable practical importance. The capacitance and inductance

matrices are
126.546  —20.644
(€] = (—20.644 106.104) pE/m,
o -
1] = (406.57 127.94

(12)
127.94 495.66) nH/m.

A factor 1072 is extracted from the matrix product [LC] for better
representation of the printout results. Fig. 1 shows the progress of
iteration and contains the numerical values.

The resulting root matrix is muiltiplied with 10™? (the root of the
extracted factor). The characteristic admittance matrix [Yo] computed

using (2) is as follows
—3.727) mS.

15.204

17.684

=3.727 13

ua=m*wa%=(

VI. NUMERICAL CONSIDERATIONS

The Newton algorithm given in Section III on mathematical
problem formulation does not require any inversion of the Jacobian
[J ]("). It is only necessary to calculate the correction term, a vector
[5]®) from [J)*[S]*) = [F]*? which leads to (10) rewritten as
[R](”+1) = [R](v) — [5](11)'

There is a slowdown of the calculations rather than a speedup
and gain of accuracy with more sophisticated solvers for systems
of simultaneous linear equations. In each iteration the equation
must be solved only once before being updated for the next step.
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Therefore L — U factorization would be a wasted effort. Pivoting
is not necessary, because the Jacobian [J] is and remains diagonally
dominant. Iteration starts with all off diagonal elements set to 0. Later
[J] contains in its main diagonal always a sum of main diagonal
elements r,, but off diagonal only zeros or single elements 7% as
given in (9). Therefore simple Gauss-Jordan algorithm is superior in
this application.

Due to the quadratic type of nonlinearities in defining (8) the
convergence is very fast and reliable. In practical applications within
line theory the root matrix is not only proven diagonally dominant
but the off diagonal elements are indeed small compared with the
diagonal ones. Within only two iteration steps the example from
Fig. 1 shows results within 10™* accuracy range.

VII. SQUARE ROOT OF SYMMETRICAL MATRICES

The algorithm proposed in this paper applies to an arbitrary
positive definite matrix. This algorithm can be simplified if in
addition the matrix is symmetric, because the root matrix will also
be symmetric and therefore contains fewer unknown elements. This
simplification will be applicable in general transmission line theory
where some calculations involve square roots of [L] or [C]. for
example [L]%[C][L]% or [C]%[L][C]% respectively [3]. In some
special cases the product [LCT] is symmetric and the simplification
can also be applied.

With a slight modification of the definition of the functions f.x
to be zeroed by Newton’s algorithm and a new index mapping for
equations and variables it is possible to make the resulting Jacobian
matrix [J] also symmetrical and use specialized equation solvers to
calculate the correction term [S].
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Elimination of Spurious Solutions in the
Calculation of Eigenmodes by Moment Method

B. Souny, H. Aubert, and H. Baudrand

Abstract—In this paper the origin of nonphysical selutions obtained
with Galerkin’s method is described. To remove these spurious solutions
a practical criterion is derived. It is shown on a patch resonator ex-
ample with expansion functions satisfying edge conditions, that spurious
solutions generated by the conventional approach are eliminated by the
application of the proposed method.

1. INTRODUCTION

The problem of finding the eigenmodes of a transmission line
or of a cavity is a classical one. Several papers, dealing with
integral methods, describe how to determine these eigenmodes by
Galerkin's method [1]-[4], but the choice of expansion functions
which incorporate the edge conditions seems to generate nonphysical
solutions, named spurious solutions [5].

The problem of spurious solutions has been mostly developed in
the context of the finite-element method: the inaccurate approximation
of the zero eigenvalue and the corresponding eigenfunctions generate
spurious solutions [6]. A similar result has been obtained by the
authors of the present paper in the context of transverse resonance
method [7): the inaccurate approximation of the infinite eigenvalue
and the corresponding eigenfunctions generate spurious solutions.

For an integral equation the origin of spurious solution is given
in [8], and a criterion for their elimination is demonstrated, but this
criterion gives no practical information about the choice of expansion
and weighting functions.

In this paper a practical criterion for a proper choice of the
expansion functions and the weighting functions is given.

II. THEORY

A. Notation

The extended [9] or symbolic [10] operator concept applied to
moment methods allows one to use generalized expansion functions
(they are in fact linear functionals), hence we further suppose here
that we use an extended operator.

Extended or symbolic operator used in functional analysis is
associated to the so-called transposed operator concept rather than
adjoint one, as well as the use of duality product rather than scalar
product [11]. Duality product is more general than scalar product;
for example it is well known that it is not mathematically possible to
define a scalar product involving the “Dirac function.”

The notations for spaces, transposed operator and duality product
are now introduced:

Let U and V represent, respectively, the domain and the range of
an operator L. The elements of U and V are functions.

Let U represent the topological dual space of U and 7 represent the
topological dual space of V. The elements of I’ and V" are continuous
linear functionals.
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